

RFMA1013-1W

10.30 - 13.30 GHz Power Amplifier MMIC

FEATURES

UPDATED 05/08/2008

- 10.30 13.30GHz Operating Frequency Range
- 29.5dBm Output Power at 1dB Compression
- 31.0 dB Typical Power Gain @ 1dB Gain Compression
- -41dBc Typical OIM3 @ each tone Pout 19.0dBm

Vd Nc Excelics Nc RFMA1013 -1W Nc Nc Vg

Different Packages Are Available

APPLICATIONS

- Point-to-point and point-to-multipoint radio
- Military Radar Systems

4

Caution! ESD sensitive device.

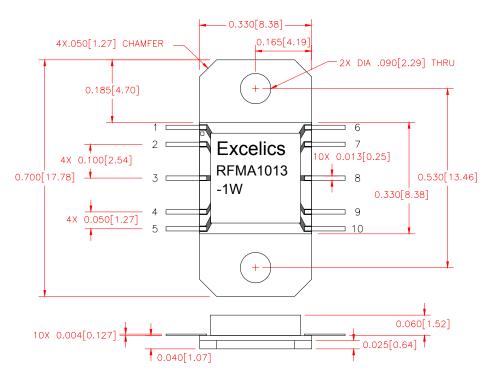
ELECTRICAL CHARACTERISTICS (T_a = 25 °C, 50 ohm, Vdd=7V, Vgg=-5V)

SYMBOL	PARAMETER/TEST CONDITIONS	MIN	TYP	MAX	UNITS
F	Operating Frequency Range			13.3	GHz
P1dB	Output Power at 1dB Gain Compression		29.5		dBm
G1dB	Gain @1dB gain compression		31		dB
OIMD3	Output 3 rd Order Intermodulation Distortion @∆f=10MHz, Each Tone Pout 19dBm	-38	-41		dBc
Input RL	Input Return Loss		-10	-8	dB
Output RL	Output Return Loss		-6		dB
ldd	Drain Current		900	1050	mA
Vdd	Drain Supply Voltage		7	8	V
Vgg	Gate Supply Voltage		-5		V
Rth	Thermal Resistance (Au-Sn Eutectic Attach)		7	7.5	°C/W
Tb	Operating Base Plate Temperature	- 30		+ 80	°C

MAXIMUM RATINGS AT 25°C

SYMBOL	CHARACTERISTIC	ABSOLUTE	CONTINUOUS ^{1,2}
Vdd	Drain Supply Voltage	12V	8V
Vgg	Gate Supply Voltage	-8V	-3 V
ldd	Drain Current	ldss	1.9A
lgg	Gate Current	132mA	22 mA
P_{IN}	Input Power	20dBm	@ 3dB compression
T_CH	Channel Temperature	175°C	150°C
T_{STG}	Storage Temperature	-65/175°C	-65/150°C
P_T	Total Power Dissipation	15.0W	12.6W

^{1.} Operating the device beyond any of the above rating may result in permanent damage.


^{2.} Bias conditions must also satisfy the following equation $Vdd^*Idd < (T_{CH} - T_{HS})/R_{TH}$, where T_{HS} = Base Plate temperature

RFMA1013-1W

UPDATED 05/08/2008

10.30 - 13.30 GHz Power Amplifier MMIC

01 Package Outline

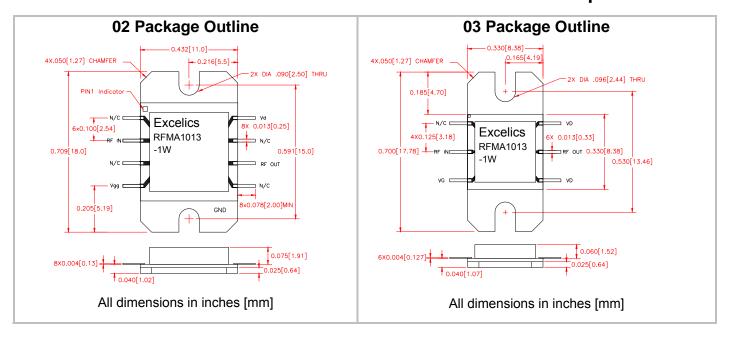
All dimensions in inches [mm]

01 Package Pin Assignment

	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8	PIN 9	PIN 10
RFMA1013-1W-01	Vd	NC	RF IN	NC	Vg	Vd	NC	RF OUT	NC	Vg
RFMA1013-1W-01A	NA	Vd	RF IN	Vg	NA	NA	Vd	RF OUT	Vg	NA
RFMA1013-1W-01B	Vd	NA	RF IN	NA	Vg	Vd	NA	RF OUT	NA	Vg

NOTE:

1. PACKAGE 01A: Recommend to Use


2. NC: Not Connected3. NA: Not Available

RFMA1013-1W

UPDATED 05/08/2008

10.30 - 13.30 GHz Power Amplifier MMIC

ORDERING INFORMATION

Part Number					
RFMA1013-1W-01	Refer 01 Package Outline				
RFMA1013-1W-01A	Refer 01 Package Outline				
RFMA1013-1W-01B	Refer 01 Package Outline				
RFMA1013-1W-02	Refer 02 Package Outline				
RFMA1013-1W-03	Refer 03 Package Outline				

DISCLAIMER

EXCELICS SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. EXCELICS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

EXCELICS SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF EXCELICS SEMICONDUCTOR, INC. AS HERE IN:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.